Graphing Functions

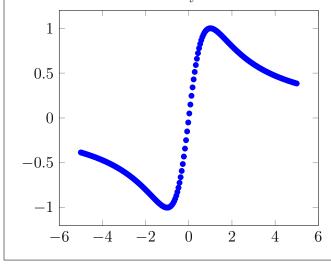
Example

1. Sketch the graph of $f(x) = \frac{2x}{x^2 + 1}$.

Solution: Take the derivative and second derivative to get $f'(x) = \frac{-2(x^2-1)}{(x^2+1)^2}$ and $f''(x) = \frac{4x(x^2-3)}{(x^2+1)^3}$. We want to make a table and the values we care about are when f'(x) = 0, f''(x) = 0, and when they are not defined. They are always defined and solving f'(x) = 0 gives $x^2 - 1 = 0$ so $x = \pm 1$, and f''(x) = 0 gives $x(x^2-3) = 0$. So the points we need to put in our table are $x = 0, \pm 1, \pm \sqrt{3}$. We fill out the table the sign of f', f'' on these intervals to get

	$<-\sqrt{3}$	$-\sqrt{3}$		-1		0		1		$\sqrt{3}$	$\sqrt{3} <$
f'(x)	—	—	_	0	+	+	+	0	_	_	—
f''(x)	_	0	+	+	+	0	—		—	0	+

Now we calculate the limits as $x \to \pm \infty$. We have $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0$. So there is a horizontal asymptote at y = 0. We can now use this to produce something similar to the following graph noting that f will have a local minimum at x = -1 and maximum at x = 1 by the second derivative test.



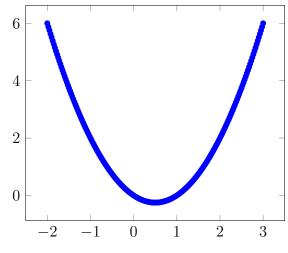
Problems

2. Sketch the graph of $f(x) = x^2 - x$.

Solution: Take the derivative and second derivative to get f'(x) = 2x - 1 and f''(x) = 2. We want to make a table and the values we care about are when f'(x) = 0, f''(x) = 0, and when they are not defined. They are always defined and solving f'(x) = 0 gives x = 0.5, and f''(x) = 0 has no solutions. So the point we need to put in our table is just x = 0.5. We fill out the table the sign of f', f'' on these intervals to get

	$(-\infty, 0.5)$	0.5	$(0.5,\infty)$
f'(x)	—	0	+
f''(x)	+	+	+

Now we calculate the limits as $x \to \pm \infty$. We have $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = \infty$. We can now use this to produce something similar to the following graph noting that f will have a local minimum at x = 0.5 by the second derivative test and f has a zero at x = 0, 1.

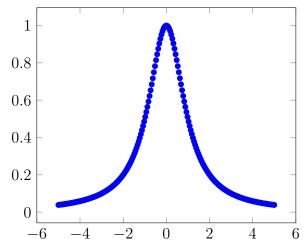


3. Sketch the graph of $f(x) = \frac{1}{1+x^2}$.

Solution: Take the derivative and second derivative to get $f'(x) = \frac{-2x}{(x^2+1)^2}$ and $f''(x) = \frac{6x^2-2}{(x^2+1)^3}$. We want to make a table and the values we care about are when f'(x) = 0, f''(x) = 0, and when they are not defined. They are always defined and solving f'(x) = 0 gives x = 0, and f''(x) = 0 gives $6x^2 - 2 = 0$. So the points we need to put in our table are $x = 0, \pm 1/\sqrt{3}$. We fill out the table the sign of f', f'' on these intervals to get

	$(-\infty, -1/\sqrt{3})$	$-1/\sqrt{3}$	$(-1/\sqrt{3},0)$	0	$(0, 1/\sqrt{3})$	$1/\sqrt{3}$	$(1/\sqrt{3},\infty)$
f'(x)	+	+	+	0	—	_	—
f''(x)	+	0	_	—		0	+

Now we calculate the limits as $x \to \pm \infty$. We have $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0$. So there is a horizontal asymptote at y = 0. We can now use this to produce something similar to the following graph noting that f will have a local maximum at x = 0 by the second derivative test.



4. Sketch the graph of
$$f(x) = x + \frac{1}{2+x}$$
.

_

f''(x)

Solution: Take the derivative and second derivative to get $f'(x) = 1 - \frac{1}{(x+2)^2}$ and $f''(x) = \frac{2}{(x+2)^3}$. We want to make a table and the values we care about are when f'(x) = 0, f''(x) = 0, and when they are not defined. They are not defined when x = -2 and solving f'(x) = 0 gives $(x + 2)^2 = 1$ so x = -3, -1, and f''(x) = 0 has no solutions. So the points we need to put in our table are x = -3, -2, -1. We fill out the table the sign of f', f'' on these intervals to get $-\infty, -3)$ -3(-3, -2)-2-2, -1) $-1,\infty$) f'(x)0 DNE 0 ++

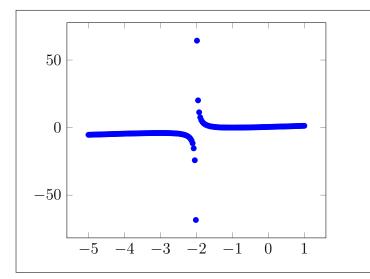
Now we calculate the limits as $x \to \pm \infty$. We have $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = \infty$. Then since f is not defined at x = -2, we calculate the limits of f there with $\lim_{x \to -2^-} f(x) = -\infty$, $\lim_{x \to -2^+} f(x) = \infty$. So there is a vertical asymptote at x = -2. We can now use this to produce something similar to the following graph noting that f will have a local minimum at x = -1 and maximum at x = -3 by the second derivative test.

DNE

+

+

+

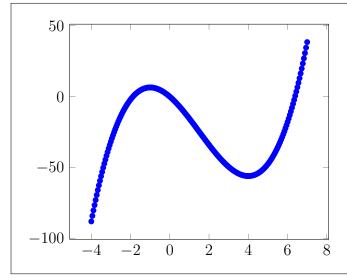


5. Sketch the graph of $f(x) = -12x - \frac{9x^2}{2} + x^3$.

Solution: Take the derivative and second derivative to get $f'(x) = -12 - 9x + 3x^2$ and f''(x) = 6x - 9. We want to make a table and the values we care about are when f'(x) = 0, f''(x) = 0, and when they are not defined. They are always defined and solving f'(x) = 0 gives $x^2 - 3x - 4 = 0$ so x = -1, 4, and f''(x) = 0 gives x = 3/2. So the points we need to put in our table are x = -1, 3/2, 4. We fill out the table the sign of f', f'' on these intervals to get

	$(-\infty,-1)$	-1	(-1, 1.5)	1.5	(1.5, 4)	4	$(4,\infty)$
f'(x)	+	0	—	—	_	0	+
f''(x)	_	—	—	0	+	+	+

Now we calculate the limits as $x \to \pm \infty$. We have $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = \infty$. We can now use this to produce something similar to the following graph noting that f will have a local minimum at x = 4 and maximum at x = -11 by the second derivative test.

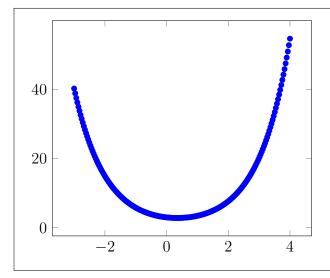


6. Sketch the graph of $f(x) = e^x + 2e^{-x}$.

Solution: Take the derivative and second derivative to get $f'(x) = e^x - 2e^{-x}$ and $f''(x) = e^x + 2e^{-x}$. We want to make a table and the values we care about are when f'(x) = 0, f''(x) = 0, and when they are not defined. They are always defined and solving f'(x) = 0 gives $e^{2x} = 2$ so $x = \frac{\ln 2}{2}$, and f''(x) = 0 has no solutions. So the point we need to put in is just $x = \frac{\ln 2}{2}$. We fill out the table the sign of f', f'' on these intervals to get

	$(-\infty,(\ln 2)/2)$	$(\ln 2)/2$	$((\ln 2)/2,\infty)$
f'(x)	—	0	+
f''(x)	+	+	+

Now we calculate the limits as $x \to \pm \infty$. We have $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = \infty$. We can now use this to produce something similar to the following graph noting that f will have a local minimum at $x = \frac{\ln 2}{2}$ by the second derivative test.

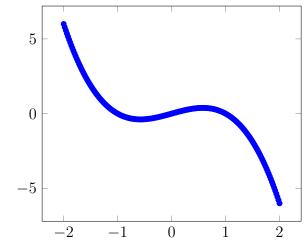


7. Sketch the graph of $f(x) = x - x^3$.

Solution: Take the derivative and second derivative to get $f'(x) = 1 - 3x^2$ and f''(x) = -6x. We want to make a table and the values we care about are when f'(x) = 0, f''(x) = 0, and when they are not defined. They are always defined and solving f'(x) = 0 gives $x^2 - 1/3 = 0$ so $x = \pm 1/\sqrt{3}$, and f''(x) = 0 gives x = 0. So the points we need to put in our table are $x = 0, \pm 1/\sqrt{3}$. We fill out the table the sign of f', f'' on these intervals to get

	$(-\infty, -1/\sqrt{3})$	$-1/\sqrt{3}$	$(-1/\sqrt{3},0)$	0	$(0, 1/\sqrt{3})$	$1/\sqrt{3}$	$(1/\sqrt{3},\infty)$
f'(x)	—	0	+	+	+	0	—
f''(x)	+	+	+	0	_	_	—

Now we calculate the limits as $x \to \pm \infty$. We have $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = \infty$. We can now use this to produce something similar to the following graph noting that f will have a local minimum at $x = -1/\sqrt{3}$ and maximum at $x = 1/\sqrt{3}$ by the second derivative test.



8. Sketch the graph of $f(x) = \frac{x-3}{x+1}$.

Solution: Take the derivative and second derivative to get $f'(x) = \frac{4}{(x+1)^2}$ and $f''(x) = \frac{-2}{(x+1)^2}$. We want to make a table and the values we care about are when f'(x) = 0, f''(x) = 0, and when they are not defined. They are not defined at x = -1 and solving f'(x) = 0, f''(x) = 0 has no solutions. So the points we need to put in our table is just. We fill out the table the sign of f', f'' on these intervals to get

	$(-\infty,-1)$	-1	$(-1,\infty)$
f'(x)	+	DNE	+
f''(x)	+	DNE	+

Now we calculate the limits as $x \to \pm \infty$. We have $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 1$. So there is a horizontal asymptote at y = 1. Now we calculate what happens as $x \to -1$ and we have $\lim_{x \to -1^-} f(x) = \infty$, $\lim_{x \to -1^+} f(x) = -\infty$ so it has a vertical asymptote at x = -1. We can now use this to produce something similar to the following graph.

